Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios
نویسندگان
چکیده
Alkenone unsaturation ratios and planktonic d18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11–15°C), vary rapidly at the beginning of the Holocene, and increase to 17–18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2– 3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The d18O of planktonic foraminifer calcite decreases by 2‰ from the late glacial to S1 sediments in the Ionian Basin and by 2.8‰ in the Levantine Basin. In the Alboran Sea, the decrease is 1.7‰. Of the 2.8‰ decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05‰ and the temperature increase explains only a maximum of 1.3‰. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Seasonal Variations of Seawater Properties in the Southwestern Coastal Waters of the Caspian Sea
Seasonal variations of the seawater properties (e.g. temperature, salinity, density and chlorophyll-a) in western part of the southern coastal waters of the Caspian Sea near the Iranian coast were studied. A portable CTD probe was applied for profiling from sea surface to bottom at 23 stations. Maximum depth of the profiling stations was more than 470 m in the study area. Vertical structure of ...
متن کاملPaleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea
Holocene paleohydrology reconstruction is derived combining planktonic and benthic stable oxygen and carbon isotopes, sea surface temperatures (SSTs) and oxygen isotope composition of seawater (δOw) from a high sedimentation core collected in the South Adriatic Sea (SAS). Core chronology is based on 10 AMS 14C measures on planktonic foraminifera and tephra layers. Results reveal two contrasted ...
متن کاملTemperature, Salinity and Density Measurements in the Coastal Waters of the Rudsar, South Caspian Sea
CTD (conductivity, temperature and depth) data collected in the coastal waters of Rudsar in summer 2008 were analyzed to identify the isothermal layers, thermocline depth and vertical structure of seawater properties. During the survey, probe was released into the seawater column down to 117 m depth. Results showed a vertical variation of temperature between 29°C at the sea surface and less tha...
متن کاملAssessing Chlorophyll-a in the Southwestern Coastal Waters of the Caspian Sea
Caspian Sea with an average depth of 27m is the largest enclosed water body in the world. Despite its enormity and valuable biotic and economic resources, investigations on the biota and seawater properties are mosaic at best. In previous studies, the monitoring of the chlorophyll-a concentrations in the Southern Caspian Sea was organized based on satellite data sets however, vertical dis...
متن کاملThe 8200 year B.P. event in the slope water system, western subpolar North Atlantic
[1] Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past 11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Alt...
متن کامل